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The tensile strength of unidirectional y-alumina fibre-reinforced AI-5 mass% Cu alloy 
composite prepared by the casting method, increased with increasing temperature, reaching a 
peak value at about 500 K, and then decreased. The reason for this is discussed from the 
viewpoints of influence of ductility of the compound layer (CuAI2) adhering to the fibre 
surface on the strength of the fibre and the influence of the yield stress of the matrix on the 
strength of the composite, using a simplified model to calculate strain energy release rate of 
the fibre and the Monte Carlo simulation technique. Two main results were found. At room 
temperature, the premature fracture of the compound led to formation of a crack, which 
caused reduction in strength of the fibre and composite. The temperature dependence of 
strength of the present composite was considered to be controlled by the following competing 
factors: increase in ductility of the compound with increasing temperature which acts to raise 
the strength of the fibre and softening of the matrix which acts to reduce the strength of the 
composite. The reason why the strength of the composite increased with increasing 
temperature below 500 K, could be attributed to the predominance of the former factor over 
the latter one. However the reason why the strength of composite decreased with increasing 
temperature above 500 K could be attributed to the predominance of the latter factor over the 
former one. 

1. I n t r o d u c t i o n  
The y-alumina fibre-reinforced aluminium matrix 
composite is known to have high specific elasticity and 
strength [1, 2]. In order to improve these properties 
further, addition of copper into the aluminium matrix 
has been attempted by Abe et al. [2], who found the 
following results. (a) With this addition, high- 
temperature properties could be improved: the 
strength of the composite did not change even after 
exposure for 1000 h at 723 K. The transverse strength 
was also improved. (b) However, the room-temper- 
ature strength of copper-doped composite was rather 
lower than the strength of non-doped one. (c) An 
interesting temperature dependence of strength was 
found: the strength of composite increased, reaching a 
peak value at about 500 K and then decreased. 

The aim of the present work was to confirm the 
temperature dependence of strength of this composite 
and to discuss the reasons why such a reduction at 
room temperature was caused by copper addition and 
why such a temperature dependence of strength 
appeared. 
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2. Experimental procedure 
The y-alumina fibres of 17 gm average diameter with a 
chemical composition of 85 wt % AI20 3 and 15 wt % 
SiO2, were consolidated with A1-5 mass % Cu alloy at 
Sumitomo Chemical Company by a casting method 
[1, 2]. The distribution of elemental copper in the 
composite was observed using an electron probe 
micro-analyser (EPMA). 

The tensile strength of the composite was measured 
at room temperature, 473 and 673 K in air with an 
Instron-type tensile machine at a crosshead speed of 
8.3 x 10 3 mm s-1 using the samples shown in Fig. 1. 
As shown later, CuA12 compound was formed on fibre 
surface. In order to ascertain the influence of the 
existence of the compound on fibre strength, the fibres 
were extracted by etching away the matrix with 1% 
and 10% NaOH solutions. With 1% NaOH solution, 
the compound was retained on fibre surface, as shown 
in Fig. 2a, while for 10% solution, it was completely 
removed from the fibre surface, as shown in Fig. 2b. 
For comparison, the fibres were also extracted with 
1% NaOH solution from the pure aluminium matrix 
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Figure 1 Configuration of samples for the tensile test. Dimensions 
in mm. 

composite. Tensile tests were carried out for the ex- 
tracted fibres at room temperature at the same cross- 
head speed for a gauge length of 30 mm. 

The fracture surfaces of composite samples and 
extracted fibres were observed with a scanning elec- 
tron microscope. 

3. R e s u l t s  
3.1. Structure of copper-doped composite 
Fig. 3 shows the distribution of elemental copper in 
the transverse cross-section of the composite. The 
copper-enriched layer formed on the fibre surface was 
CuA12 (0-phase in the aluminium-copper binary dia- 
gram [3]). The concentration of elemental copper in 
the matrix was 2.2 mass %. 

3.2. Temperature dependence of the 
strength of composite 

The tensile strengths of undoped and copper-doped 
composites at room temperature reported by Abe 
et al. El, 2] were 860 and 590 MPa, respectively. The 
addition of copper led to a reduction in strength at 
room temperature. Fig. 4 shows the variation of 
strength as a function of temperature, where the 
strength values are normalized with respect to the 
average strength of the composite at room temper- 
ature, CYc,R~r. It was confirmed that the strength of the 

Figure 2 Appearance of side surfaces of the fibres extracted from the 
composite with (a) 1% and (b) 10% NaOH solutions. 

composite increases, reaching peak at about 500 K 
and then decreases with increasing temperature. 

3.3. Frac ture  m o r p h o l o g y  
Fig. 5 shows the fracture surfaces of the samples tested 
at room temperature. It is clearly found that the 
compound layer (CuAI2) is broken in a brittle manner 
and the breakage of the fibres is initiated from the 
compound. In the composite systems of boron 
(fibre)/aluminium(matrix) [4-63, graphite/aluminium 
[7], boron/ti tanium [4] and ~-alumina/A1-Li [8-1, the 
interracial reaction layers, covering the side surface of 
the fibres continuously, are broken during an early 

Figure 3 Distribution of elemental copper. 
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Figure 4 Temperature dependence of strength of the composite 
samples. The strength, cyo, is normalized with respect to the strength 
at room temperature, %,RT. (O) Present work, (A) Abe et al. [1, 2]. 

stage of deformation, making circumferential cracks 
on the fibre surfaces, which reduces the strength of the 
fibres. Similar to the strength of these composite sys- 
tems, the strength of the present composite is con- 
sidered to be reduced by the premature cracking of the 
brittle compound layer although the compound is not 
continuous but almost platelet shaped in the present 
samples. 

Fig. 6 shows the macroscopic fracture morphology 
of the samples tested at room temperature and 673 K. 
A typical feature is that the pull-out of fibres becomes 
predominant at high temperatures. 

3.4. Tensile s trength of the  extracted fibre 
Fig. 7 shows the distribution of strength of extracted 
fibres. Fig. 7a-c refer to the fibres with the compound 
layer extracted from the copper-doped matrix com- 
posite (A), that of the fibres without a compound layer 

Figure 5 Fracture morphology of fibres in a composite tested at room temperature. 

Figure 6 Fracture surface of composite samples tested at (a) room temperature, and (b) 673 K. 
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Figure 7 Distribution of strength of fibres A C extracted from 
composites. (a) Fibre A, extracted from copper-doped matrix com- 
posite with 1% NaOH solution, having the compound on the 
surfaces. (b) Fibre B, extracted from copper-doped matrix com- 
posite with 10% NaOH solution, having no compound on the 
surfaces. (c) Fibre C, extracted from pure aluminium matrix com- 
posite with 1% NaOH solution. 

extracted from the copper-doped matrix composite 
(B), and that of the fibres extracted from the pure 
aluminium matrix composite (C), respectively. Fig. 8 
shows the Weibull plot [9] for fibres A-C. From Figs 
7 and 8, the following features could be seen. 

1. The strength of the fibres without compound 
layer (B, 1.6 GPa on an average) was essentially the 
same as that of the fibres extracted from pure alumi- 
nium matrix composite (C, 1.6 GPa), but the strength 
of the fibres with the compound layer (A, 1.0 GPa) was 
lower than that of the fibres without a compound 
layer (B, C). 

2. The shape parameters for the Weibull distribu- 
tion for fibres A C were 3.0, 4.2 and 4.8, respectively; 
namely, the scatter of strength of the fibres with a 
compound layer (A) was large in comparison with that 
of the fibres without a compound layer (B, C). The 
strength and shape parameter of bare y-alumina fibre 
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Figure 8 Weibull-plot for fibres A-C. F is the cumulative distribu- 
tion function. 
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for gauge length 20 mm have been reported to be 
1.8 GPa and 5, respectively, by Abe et al. [1, 2]. 
Applying the length dependence of strength based on 
the Weibull distribution, the strengths of fibres B and 
C for the present gauge length, 30 ram, are expected to 
be 1.8 and 1.7 GPa, respectively, for a gauge length of 
20 mm. The strength of the present fibres B and C is 
essentially the same as that of original one. 

From the results stated above, it could be suggested 
that the copper addition did not degrade the strength 
of the fibres directly but it degraded the strength 
through the existence of the compound layer, whose 
premature fracture resulted in the formation of cracks 
on the fibre surfaces. 

4. R e s u l t s  a n d  d i s c u s s i o n  
4.1. Reduction in strength of fibres and 

composite due to copper addit ion 
at room temperature 

In order to demonstrate numerically how the fibre 
strength is reduced by the premature fracture of the 
compound, the strength of the fibre was calculated 
using the following simplified method. The compound 
was treated as a platelet in the calculation. 

4. 1.1. Calculation of the strength of  a fibre 
with a cracked compound layer 

Fig. 9 shows a schematic drawing of the model con- 
sisting of a single fibre with a strongly adhering 
compound which is cracked at Y= 0 where Y is 
defined as the distance in the longitudinal direction 
from the crack. The thickness, width, length and cross- 
sectional area of the compound are a, W, L and S 
( = a W), respectively. Denoting the applied load as P 
and the compliance for the notched area S as C(S), the 
strain energy release rate of the fibre, k, is given 
by 1-10] 

k = ( p 2 / 2 ) [ d C ( S ) / d S ]  (1) 

where dS is the increment of cross-sectional area of the 
crack. In this work, k was calculated by modifying 

la} [b} It) 

Figure 9 (a) Schematic representation of the fibre with adhering 
broken compound. (b) Transverse cross-section of the region in 
which the compound adheres. The compound is shown at the right- 
hand side. (c) Longitudinal cross-section including compound. 



Equation 1 into the form 

X = (p2/2){AI~mo[C(S + A S ) -  C(S)]/(AS)} 
(2) 

C(S) and C(S + AS) were calculated using the shear- 
lag-analysis technique [11-143 which has been 
applied to calculate stress concentrations in the fibres 
adjacent to broken fibres in fibre-reinforced com- 
posites. Fracture of the fibre was regarded to occur 
when 

> (3) 

where X~ is the critical strain energy release rate. 
The details of the procedure for calculation are 

shown in the Appendix. 

4. 1.2. Variation of strength of fibre as a 
function of  thickness, length and 
width of the compound at room 
temperature 

As the compound layer behaves elastically at room 
temperature, the calculation was carried out for the 
situation shown in Fig. A2a in the Appendix. 

First, in order to determine the influence of thick- 
ness, a, length, L, and width, W, of the compound on 
the strength of the fibre, calculation was carried out 
for various combinations of the values of W, L and a 
for an assumed value of X c = 3 J m -  a. The values of Ef 
and Ec were taken to be 210 [1, 2] and 130 GPa  [15], 
respectively. The Rf was 8.5 gm [1, 2]. The shear 
modulus, G, was calculated from G = E/J2(1 + v)] 
where v is Poisson's ratio, which was taken to be 0.25 
in this work. 

Figs 10 and 11 show the calculation results on 
variations of cyfu as a function of W for fixed values of 
a and L and as a function of a for fixed values of W 
and L, respectively. The results demonstrate well that 
the larger the width, W, the length, L, and the thick- 
ness, a, of the compound, the lower becomes the 
strength of fibre. 

0 the Denoting the strength of a bare fibre as Cyfu, 
0 if the width of the strength of the fibre is given by ~f,  

compound is narrower than a critical value, Wcrit, for 
fixed values of L and a, because the crack cannot 
extend into the fibre because X < X~ for W < Worit. In 
this range, the calculated values of ~f,  are higher than 

o which means that the fibre is broken due to its O'fu ~ 

intrinsic defects. Taking cr~ = 1.8 GPa  as an example, 
the strength of fibre varies, for instance, along ABC as 
a function of W for fixed values of a = 0.5 jam and 
L = 2/am, as shown in Fig. 10. The critical value of 
Wcrit is dependent on the values of a and L: it becomes 
large when the values of L and a are small, while it 
becomes small when those are large. In a similar 
manner, there are critical length Lcrit and critical 
thickness acrit , below which no reduction in fibre 
strength occurs, for fixed values of a and W and for 
those of W and L, respectively. These critical values 
become small when other parameters become large, as 
well a s  Wcrit. 
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Figure 10 Influence of width, W, of the compound on the strength 
of the fibre, ~fu, for a fixed length, L, and thickness, a, of compound.  
X c = 3 J m  3.(1) a = 0 . 5 g m ,  L = 2 g m ; ( 2 )  a = 0 . 5 g m ,  L =  10gin; 
(3) a = 2.0 lam, L = 2 }am; (4) a = 2.0 pro, L = 10 gin. 
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Figure 1 l Influence of thickness, a, of a compound on strength of a 
fibre, C~fu, for a fixed width, W, and length, L, of compound.  
X ~ = 3 J m  -2.(1) W = 2 g m ,  L = 2 g m ; ( 2 )  W = 2 g m ,  L =  10gm; 
(3) W = 5 g m ,  L =  10pm. 

From the calculation, it is well understood that the 
premature fracture of the compound layer reduces the 
strength of fibres when the size of the compound is 
large. The difference in strength between an alumi- 
nium matrix composite (860 MPa) and a copper- 
doped aluminium matrix one (590 MPa) could be 
understood in this way. 

4.2. Temperature dependence of the strength 
of a composite 

As shown in Fig. 4, the strength of the composite 
increased with increasing temperature and then 
decreased. Furthermore, the strength below about 
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700 K was higher than the strength at room temper- 
ature. Why such a temperature dependence appeared 
could be explained as follows from the viewpoints of 
plasticity of the compound and the yield stress of the 
matrix. 

4.2. 1. Influence of plasticity of  a compound 
on strength of a fibre 

The plasticity of the present compound (CuA12) was 
investigated by Herzberg et al. [15] who found that 
the onset temperature was 423 K from the tensile 
testing of unidirectionally solidified eutectic 
CuAl2 aluminium composite alloy. If plasticity 
appears in the compound above 423 K, it will reduce 
the strain energy release rate and raise the strength of 
the fibre. To demonstrate this speculation, the strain 
energy release rate of the fibre, k, was calculated by the 
procedure shown in the Appendix. An example of the 
results of the calculation is shown in Fig. 12 where the 
shear yield stress of the compound is varied from 
100-500 MPa for fixed values of a, W and L. From 
Fig. 12, the following features could be seen. 

1. k is proportional to the square of the applied 
stress, ~2 when the applied stress is low. Once yielding 
occurs at high applied stress, the strain energy release 
rate becomes lower than the linear relation. This indic- 
ates that when the plasticity appears in the compound 
above 423 K, the strain energy release rate of the fibre 
becomes small. 

2. The lower the yield stress of the compound, the 
lower the strain energy release rate of the fibre 
becomes, at high applied stress. 

3. If we assume kc = 3 J m 2 ,  the strength of the 
fibre increases from 0.88 GPa for Zy = 500 MPa to 
1.34 GPa for zy = 100 MPa. This indicates that the 
lower the yield stress of the compound, the higher the 
strength becomes. 

Feature 3 suggests that the strength of the fibre 
increases with increasing temperature, because the 

yield stress of the compound decreases with increasing 
temperature. The reason why the strength of the com- 
posite increases with increasing temperature up to 
about 500 K could be attributed to this effect. On the 
other hand, why the strength of the composite de- 
creases with increasing temperature beyond about 
500 K cannot be explained by this effect, because it 
predicts only an increase in strength with increasing 
temperature. In order to explain the reduction above 
500 K, the factors which act to reduce strength should 
be taken into consideration. As one such factor, the 
softening of the matrix can be mentioned. In the 
following section, the influence of this factor on the 
strength of composite is discussed. 

4.2.2. Influence of softening of matrix on 
strength of composite 

As the strength of the fibres has a scatter as shown in 
Fig. 3, weaker fibres will be broken prior to stronger 
ones. When weaker fibres are broken, a stress concen- 
tration arises in the neighbouring fibres together with 
a loss of load-bearing capacity of the broken fibres 
within the distance of the half-critical length from the 
broken ends. The loss of load-bearing capacity of the 
broken fibres is large when the critical length becomes 
large [16]. Both stress concentration and critical 
length are affected by the softening of the matrix. 

The stress concentration and critical length can be 
calculated using the shear-lag-analysis method [13]. 
Figs 13 and 14 show examples of the variation of stress 
concentration factor, K, and that of critical length, Ic, 
as a function of applied stress on the fibres, of, at 
infinity, for various yield stresses of the matrix Zmy' 
The stress concentration factor decreases but the crit- 
ical length increases with decreasing yield stress of the 
matrix. This indicates that softening of the matrix acts 
to raise the strength of the composite from the point of 
decrease in stress concentration, but it acts also to 
reduce the strength from the point of increase in the 
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Figure 12 Strain energy release rate of a fibre, X, plotted against 
square  of fibre stress, o f  2, for var ious yield stresses of the comp o u n d  
at Xo = 3 J m  -2, for fixed length, L = 10 gm, width, W = 5 p.m, and 
thickness, a = 2 ~ m .  (1) zy = 500MPa ,  %,  = 0.88 GPa;  (2) zy 
- 300 MPa,  c% = 0.89 GPa;  (3)zy = 200 MPa,  %u = 1.11 GPa;  (4) 

"~y = 100 MPa,  cyfu - 1.34 GPa.  
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Figure 13 Influence of shear yield stress of matrix, "troy,  Oil the stress 
concentrat ion factor, K, in the fibres neighbouring a broken fibre. 
"~my: (1) 5 MPa,  (2) 10 MPa,  (3) 30 MPa,  (4) 50 MPa.  
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Figure 14 Influence of shear yield stress of a matrix, Zmy, on critical 
length, 1 c. z~: (1) 5 MPa, (2) 10 MPa, (3) 30 MPa, (4) 50 MPa. 

critical length. Thus the strength of a composite is 
determined by the competition of these factors. 

In the present work, in order to determine how 
these factors act to determine the strength of a com- 
posite as a function of yield stress of the matrix, a 
Monte-Carlo simulation method was applied. The 
procedure of this method has been described else- 
where 1-17]. Fig. 15 shows the results in which the 
strength of composite, Go, is normalized with respect 
to the prediction based on the rule of mixtures, Or 
and the yield stress of the matrix, "[my, is normalized 
with respect to the average strength of the fibres, Cyfu.~ 
The strength of the composite, Gr increases but then 
decreases with increasing shear yield stress of the 
matrix. This result indicates that the influence of the 
decrease in critical length is predominant over that of 
the increase in stress concentration in the range 
Zmy/Of ~ < 0.05, resulting in an increase in strength of 
the composite with increasing yield stress of the 
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Figure 15 Variation of the strength of a composite, Go, as a function 
of shear yield stress of the matrix, "~my, predicted by a Monte-Carlo 
computer simulation technique [16]. The strength is normalized 
with respect to the prediction based on the rule of mixtures and the 
shear yield stress of the matrix is normalized with respect to the 
average strength of the fibres, or,.~ The Weibull shape parameter is 
taken to be 5. 

matrix, while the latter is predominant  over the former 
in the r a n g e  "~'my/O'f% > 0.05,  resulting in a reduction in 
strength with increasing yield stress of the matrix. As 

o = l . 8 G P a  in the present Tmy < 50  MPa and Gfu 

samples, the strength of the composite decreases with 
decreasing yield stress of matrix, i.e. with increasing 
temperature. 

Summarizing the results of Sections 4.2.1 and 4.2.2, 
it might be concluded that the strength of the com- 
posite increases with increasing temperature due to 
the appearance of plasticity of the compound,  but it 
decreases at high temperatures due to softening of the 
matrix although the fibre strength is expected to 
increase. 

5. Conclusions 
The reduction in strength of y-alumina fibre-rein- 
forced aluminium matrix composite at room temper- 
ature due to addition of elemental copper into the 
matrix could be attributed to the formation of a crack 
on the fibre surface introduced by a premature frac- 
ture of adhering compound CuAI 2. The strength of the 
composite increased with increasing temperature due 
to plasticity of the compound, but then decreased due 
to softening of the matrix, which led to an increase in 
critical length, resulting in a loss of load-bearing 
capacity of the fibres. 
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Appendix :  ca lcu la t ion  of  the  strain 
energy release rate of  
a f ibre  

A I .  M o d e l l i n g  
For the calculation, a fibre with a compound layer on 
its surface was modelled as follows. 

The fibre, of radius Rf, cross-sectional area Sf, and 
length Lf, has a platelet-compound with thickness a, 
length L and width W, as shown in Fig. A1. Young's 
and shear moduli of the fibre are Ef and Gf, 
respectively, and those of the compound E c and Go, 
respectively. 

In the present work, for simplicity, the fibre was 
regarded to be composed of N1 platelet elements as 
shown in Fig. A1. The cross-sectional area of each 
element was taken to be equal to that of the com- 
pound ( = a W). The element at the left-hand side was 
numbered 1, the next one 2, and then 3, 4 . . . . .  and N1 
to the right-hand side. The compound was numbered 
N where N = N1 + 1. The thickness and width of 
element i were denoted T~ and W~, respectively. The 
interface between elements i - 1 and i was expressed 
as i - 1 / i  interface. The displacement from Y = 0 of 
element i was denoted U i and that of the interface 
between i -  1 and i, Ui-1/~. The Young's and shear 
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Figure A1  Modelling of a fibre with a cracked compound platelet 
for application of shear lag analysis. (a) Schematic drawing of 
a transverse cross-section at Y= 0 divided into N elements. 
(b) Longitudinal cross-section. 

moduli of element i were shown by E i and Gi, respect- 
ively. If element i existed within the fibre, E i and Gi 
were given by Ef and Gf, respectively, while, if it 
existed within the compound, they were given by Ec 
and G c, respectively. 
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Figure A2  Schematic representation of regions which appear 
(a) when the compound has no plasticity, and (b) when it has 
plasticity. In (b), the compound at the interface deforms plastically 
in shear in Regions C and D, but elastically in Region B. 

At room temperature, as the compound deforms 
elastically, there are two regions, as schematically 
shown in Fig. A2a: Region A (Y>~ L/2)  where no 
compound adheres to the fibre (i.e. bare fibre region) 
and Region B (0 <~ Y <~ L/2) where the compound 
adheres and deforms elastically at the interface. 

On the other hand, above 423 K, shear yielding 
occurs in the compound at the interface. As highest 
shear stress is exerted at the cracking portion ( Y = 0) 
and the next highest one at the compound ends 
( Y = L/2),  the shear yielding of the compound occurs 
first at Y = 0 and then L/2. The yielding regions grow 
with increasing applied stress. Now we define the 
yielding regions as Regions C and D and the lengths 
of the former and latter regions as L / 2 -  D 2 and 
D1, respectively, as shown in Fig. A2b. In this case, 
there are four regions: Regions A (Y>~L/2) ,  
B (D1 ~< Y 4  D2), C (D 2 <~ Y<<. L/2)  and D 
(0 ~< Y ~< D1). 

A2. Definition of regions 
The compound layer deforms elastically at room 
temperature. On the other hand, plasticity appears in 
the compound above 423 K [15]. In the present calcu- 
lation, for the room-temperature strength of a fibre 
with a compound layer, the critical strain energy 
release rate of the fibre was calculated based on the 
elastic deformation of fibre and compound and on the 
elastic stress transfer at the fibre-compound interface. 
On the other hand, the shear yielding at the interface 
was taken into consideration for the strength above 
423 K. This calculation method is rough, because 
tensile yielding of the compound at high temperatures 
is ignored. However, even this rough calculation can 
show the reduction in strain energy release rate of the 
fibre, as shown in Section 4.2. 

At the interface between the fibre and compound, 
shear stress arises. When the exerted shear stress 
becomes higher than the shear yield stress of the 
compound, the compound at the interface deforms 
plastically in shear. 

A 3 .  E q u a t i o n s  f o r  s t r ess  e q u i l i b r i u m  
For Regions A and B, applying Dow's expression [14] 
which was originally proposed to calculate stress 
transfer from matrix to fibre in a fibre-reinforced 
composite, the interracial shear stress at the i/i + 1 
interface, rui+ 1, is approximately written as 

* i ,+1  = G ( u i , + I  - E ) / ( r , / 2 )  

= 6 i + l ( S i +  1 - -  U i / i + l ) / ( T i + l / 2 )  (A1) 

Eliminating Uui+l in Equation A1, we have 

T, i / i+ 1 = H i ( U i +  1 - -  Ui) (12)  

Hi = 2GiGi+I/(GiT~+I + Gi+,T~) (A3) 

( i =  1 to N1 = 1 for Region A and 1 to N -  1 for 
Region B). 

For Regions C and D, the shear stress for i = 1 to 
N1 - 1 is also given by Equation A2, and the shear 
stress ZN1/N is given by the shear yield stress of the 
compound, Zy. 

Denoting the cross-sectional area of element i as Si 
and the length of interface between elements i and 
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i + 1, which is given by the smaller value between 
W~ and W~+I, as Q~, the equations for stress equilib- 
rium are given as follows. 

Region A 

S ~ E I ( d 2 U 1 / d Y  2) + Q1Tq/2 = 0 (A4) 

S i E i ( d 2 U i / d Y  2) 4- QiTi/i+l -- Q i _ l z i _ l / i  = 0 

( i - -  1 to N1 - 1) (A5) 

S N E u ( d 2 U N 1 / d Y  2 ) -  QNI_lZNI_I/N1 = 0 (A6) 

Region B 

S 1 E I ( d z U 1 / d Y  2) + Qlzl /2 = 0 (A7) 

S i E i ( d 2 U i / d Y 2 )  + QiT'i/i+l -- Q i - l z i  1/i = 0 

( i =  1 t o N - -  1) (AS) 

SNEN(dEUN/dY;  ) - QN_lzN_I/N = 0 (A9) 

Regions C and D 

S I E I ( d 2 U 1 / d Y  2) 4- Ql"r,1/2 = 0 

SiEi(  dZ Ui /d  Y 2) 4- Qizi/i+ l - Qi_ l'ci_ l/i 

( i =  1 t o N 1 - -  1) 

SNIENI(d2Uw~/dY  2) + QNtZy 

- -  Q N I _  I T N I _  I/N1 

S N E N ( d 2 U N / d Y 2 )  - - Q N  1Ty = 0 

(A10) 

= 0 

(All)  

= 0 

(A12) 

(A13) 

A4.  N o n - d i m e n s i o n a l i z a t i o n  
In order to obtain a convenient form for the problem, 
non-dimensionalization has been done in the shear lag 
analysis [11 13]. In this work, the ordinary expres- 
sion of non-dimensionalization was modified for the 
present problem as follows. 

T~ = T lt~ (A14) 

Wi = Tl wi (A15) 

S i = S1s i = W I T I S  i = T2w1s i  (A16) 

Ei = Elei  (A17) 

G i = G i g  i (A18) 

Hi = Glh i /T1  

[ h  i = 2 g i g i + l / ( g i [ i +  1 4- g i + l t i ) ]  (A19) 

U,( i=  1 t o N )  = % T I [ 1 / ( E I G 1 ) ] t / Z u i  (120) 

Qi = Tiqi(qi = wi when wi < wi 1 

and qi = wi+l when wi > Wi+l) (A21) 

(A22) 

(123) 

(124) 

(125) 

Y = TI(E1/G1)I /2y  

L = Tl(E1/G1)1/21 

Lf = r l (E~/G1) l /2 le  

D 1 = T I ( E 1 / G 1 ) I / 2 d l  

D2 = Tt(E1/G1)I/2d2 (A26) 

T,y = of(G1/E1)I/eT.'y (A27) 

where % is the fibre stress at infinity ( Y = oc). The ti, 
f wi, si, % gi, hi, ui, qi, Y, l, lf, dl ,  d2 and Zy are non- 

dimensionalized forms of T/, Wi, Si, Ei, Gi, Hi, U~, Q~, 
Y, L, Lf, D1, D 2 and Zy, respectively. Under this non- 
dimensionalization, the stress concentration factor, 
Ki, is given by 

Ki = dui /dy  (A28) 

Substituting Equations A14-127 into Equations 
A4-A 13 and letting 

2qlhi/(eisi)  "= m i (A29) 

2qi - lh i -1 / (e i s i )  = nl (A30) 

we have following simplified equations: 

Region A 

d 2 u l / d y  2 + m l ( u  2 - 121) = 0 ( A 3 1 )  

d2ui /dy  2 + mlui+t - (mi + ni)ui 

4- gliUi_ 1 ~--- 0 

(i = 1 to N1 - 1) (A32) 

dZuN/dy 2 - nm(Uul - uNl_ l )  (A33) 

Region B 

d 2 u l / d y  2 + ml(u  2 - ul) = 0 (134) 

d 2 u i / d y  2 + miui+ 1 - -  (m i -4- ni)u i 

4- ~liUi- I = 0 

(i = 1 to N - 1) (A35) 

d2uN/dY 2 -- nN(UN -- UN- 1) (A36) 

Regions C and D 

d 2 u l / d y  2 + ml(u 2 - ul) = 0 (A37) 

d2u i /dy  2 4- miui+ 1 -- (m i 4- ni)u i 

4- n iU i -  1 = 0 

(i = 1 to Ul  - 1) (A38) 

d2uN1/dy 2 + [WN1/(eNlsN1)]'t'y 

- -  R N I ( U N 1  - -  / A N I _ I )  = 0 (A39) 

d2uN /dy  2 - [WN/(eNSjv)]'C'y = 0 ( A 4 0 )  

A5.  General  so lu t ion  of  u i 
The general solutions of ui (i = l -N1 for Region A 
and i =  1-N for Regions B-D) are given as follows 
under a condition of K = 1 at infinity (Y = oo). 

Region A 

NI l 

uA = Z AjBi,  j e x p ( - -  k jy )  + y + AN1 
j = l  

(A41) 

where Aj are unknown constants, (ka) 2 (kj  > 0) are 
eigen values except zero for the matrix TN1 given by 
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TN1 --~ 

m 1 - -  m 1 

- -  /'/2 m 2  + n 2 - -  m 2 0 

- -  /'/3 m 3  + / / 3  - -  m 3  

- -  / ' / N 1 - 1  r a N 1 - 1  -]- / ' / N 1 - 1  - -  r a N 1 - 1  

- -  Y/N1 n N 1  

(A42) 

and Bi, j a r e  constants  given by 

B1, j = 1 ( j =  1 t o N 1  - 1) (A43) 

B2, j = (1 - k Z / m l ) B l , j  ( j =  1 t o N 1  - 1) 

(A44) 

Bi, j = (1 + ni_l / rn i_ l  - k 2 / m i _ 1 ) B , _ l , j  

-- ( n i _ l / m i _ l ) B i _ 2 , j  

( i = 3  t o N l ,  j =  1 t o N i  - 1) (A45) 

Region B 

2 ( N -  1) 

U~ = E C j D i ,  j e x p  ( v j y )  -f- C Z N _ l Y  -}- C2N 
j = l  

(A46) 

where Cj are unknown  constants,  (vj)  2 are eigen 
values except zero for the matr ix  TN given by 

L1(2 ) = - 1/m I (A54) 

L I ( i  ) = _ 1/mi_ 1 + n i _ l L l ( i -  1)/mi_ 1 

(i = 3 to N1) (A55) 

L2(1 ) = 0 (A56) 

L2(2) = - 1/ma (A57) 

L2(i ) = L2(i - 1) + L I ( i  ) (i = 3 to N1)  

(A58) 

Region D 

u C =  
2(N1 - 1) 

2 R j B i ,  j e x p  (kjy) + R 2 N  1 _ l Y  + R 2 N 1  
j = l  

+ ( w N 1 G / { e N I ~ N I [ 1  --  n ~ L I ( N 1 ) ] } )  

x [y2 /2  + L2(i) ] (i = 1 to N1)  (A59) 

T~ = 

m I - -  m 1 

- -  n 2 rn  2 + n 2 - -  m z 0 

- -  n 3  m 3  Av /'13 - -  m 3  

0 -- n N -  1 m N -  1 -]- n N -  1 -- raN- 

- n N n N 

(A47) 

and Di, j are constants  given by 

D1, j = 1 ( j =  1 t o 2 ( N  - 1)) (A48) 

D2, j = ( 1  - -  k 2 / m l ) B l , j  

( j = l  t o 2 ( N 1  - 1)) (A49) 

Di, j = (1 + n i _ l / m i _  1 -- k 2 / m i _ l ) U i _ l , j  

--  (rli_ l / m i _  l ) B i _  2, j 

( i = 3 t o N ,  j = l t o 2 ( X -  1)) (A50) 

Region C 

u?= 
2(N1 - 1) 

PjBi,  j exp ( k j y )  + P2Sl lY + P2N1 
j = l  

+ (WNIT, ' y / {eNISNI[1  -- nNILI(N1)]}) 

x [ y Z / 2  + L2(i ) ]  ( i =  1 t o N 1 )  (A51) 

uC = - wMC'yYZ/(2eNsN) + P2N1+1 -k- P:N 

(A52) 

where Pi (i = 1-2N)  are unknown  values, kj+N1-1 is 
equal  to -- kj for i = l - N 1  - 1 where (kj) 2 (kj. > 0) 
are eigen values given by Equa t ion  A42 and L 1(i) and  
Lz( i  ) are given by 

LI(1  ) = 0 (A53) 

u c = _ WNZ'yyZ/(2eNsN) + R z u l + l  + RzN 

(A60) 

where R i (i = 1-2N)  are unknown  values. 

A6. B o u n d a r y  c o n d i t i o n s  
The unknown  constants,  Aj (j = 1 N1)  and Cj, Pj ,  
Rj  ( j  = 1-2N),  dl and d 2 could be solved f rom the 
following bounda ry  condit ions when Regions A - D  
exist. When  only Regions A and B exist, the bounda ry  
condit ions 2 given below were removed.  

A6. 1. Case A:  no f ibre~elements are broken 
1. At y = 0, the displacements  of  fibre-elements 

( 1 - N  1) are zero, and the stress of  compound-e lemen t  
(N)  is zero, 

2. At y = d 1 and d 2, the stresses and displacements  
of all elements are continuous,  and the shear stresses 
at the f i b r e - compound  interface are equal  to the shear 
yield stress of  the compound .  

3. At y = 1/2, the stresses and displacements  of 
f ibre-elements are continuous,  and the stress of  the 
compound-e lements  is zero. 
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A6.2. Case B: the f ibre-element N1 is broken 
The boundary conditions 2 and 3 are the same as 
above. Condition 1 was modified as follows. 

l'. At y = 0, the displacements of fibre-elements 
(1 N1 - 1) are zero, and stresses of fibre-element (N1) 
and compound element (N) are zero. 

A6.3. Case C: the fibre-elements N1 - 1 and 
N1 are broken 

The boundary conditions 2 and 3 are the same as 
above. Condition 1 was modified as follows. 

1". At y = 0, the displacements of fibre-elements 
( l -N1 - 2)are zero, and the stresses of fibre-elements 
( N 1 -  1 and N1) and compound-element (N) are 
zero. 

A7. Stra in  e n e r g y  re lease  rate, 
Assuming that Lf is large, e x p ( -  kilt~2) in Equa- 
tion A41 is nearly zero, where le is a non-dimensional 
form of Lf given by Equation A24. In such a situation, 
the displacements of all fibre-elements at Y = Lf/2 is 
given by lr/2 + AN1 in non-dimensional form. Noting 
the displacement at Y = Lf/2 for crack area S as U(S) 
and the value of Am for crack area S as ANt(S), U(S) 
is expressed as 

U ( S )  = L f / 2  + A N I ( S  ) (A61) 

The compliance for crack area S, C(S), is then given 
by 

C(S) = 2U(S)/P 

= [Lf + 2Am(S)] /P  (A62) 

where P is the applied load. Now let the crack prop- 
agate by AS. Noting the displacement of all elements 
at Y = Lf/2 for crack area S + AS as U(S + AS) and 
the value of AN1 as AN1 (S + AS), the compliance 
C(S + AS) is given by 

C(S + AS) = 2U(S + AS)/P 

= [Lf + 2AN~(S + AS)]/P (A63) 

P is given by rcRf 2 cry. Combining Equations A20, A62 
and A63 with Equation 2, we have 

)~ = (gR2~2)[1/(EfGf)31/2 

lim T I { [ A N I ( S  + AS  ) - A N I ( S ) ] / A S } )  
AS~.O 

(A64) 

In the present work, )~ was calculated as follows. 
ANI(S) was calculated by using the boundary condi- 
tions for Case A. Next, AS (described as AS1) 
was taken to be the cross-sectional area of N1 
element (AS 1 =S in ) ,  and the unknown constant 
Am(S  + AS1) was obtained by using the boundary 
conditions for Case B. Then AS(AS2) were taken to be 
the sum of the cross-sectional area of N 1 - 1 and N 1 
elements and the unknown constant Am(S  + AS2) 
was obtained by using the boundary conditions for 
Case C. The value of X was obtained by linear extra- 
polation to AS = 0. 
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